Hematopathology Training Program

Molecular Hematology
Goals & Objectives and Training Schedule

For:

Contact:

Supervisor/Preceptor:

Dr. Gary D. Sinclair, PhD., AAACLDS
Section Head Molecular Hematology
Diagnostic and Scientific Centre
1E 424 9-3535 Research Rd NW
Calgary, Alberta, Canada, T2L 2K8
Ph: (403) 770-3594
Email: Gary.Sinclair@cls.ab.ca

Preceptor:

Dr. Xiu Yan Jiang, M.D., MSc., FRCPC
Hematopathologist
Diagnostic and Scientific Centre
1E-411 9-3535 Research Rd NW
Calgary, Alberta, Canada, T2L 2K8
Ph: (403) 770-3548
Email: Xiu.Jiang@cls.ab.ca
GOALS & OBJECTIVES

General Objectives:

Molecular Hematology laboratory plays a key role in the diagnosis and management of various malignant and non-malignant disorders. This laboratory also provides critical information regarding the clinical management of bone marrow transplant patients. Trainees will have one week rotation in the laboratory to observe the molecular techniques currently being carried out in the laboratory that employ immunologic assays (ELISA, binding assays, Western blotting), or polymerase chain reaction (whole blood PCR, reverse transcription directed PCR, real-time PCR and inverse PCR) for: 1) detection of mutations and carrier determination in disorders of hemostasis and thrombosis, 2) the molecular detection and monitoring of abnormal fusion gene transcripts in leukemias, 3) detection of mutations in signalling proteins with prognostic value in AML, 4) JAK-2 mutations in chronic MPDs and 5) the determination of blood cell chimerism after bone marrow/PBSC transplantation. For those assays not currently running in the laboratory, the resident will review assay theory, procedures, and previous results with the laboratory director. This rotation will provide opportunity to have a broader understanding of technical aspects, clinical application, and appropriate use/limitations of molecular techniques in the diagnosis and clinical management of various hematologic disorders.

The resident/fellow will also participate in a sign out session of Molecular Hematology. During this session a hematopathologist/hematologist and laboratory director will review all the molecular hematology results of the week. The clinical application, appropriate subsequent testing and advice to clinician will be discussed and the report will be finalized in the light of available clinical information and additional assay performed in various other laboratories.

General expectations:

1. Daily meeting with laboratory section head
2. Daily visit to molecular hematology laboratory and observation of advance molecular testing protocols
3. Participation in at least one molecular sign-out session with consulting hematopathologists
4. Self study, regular review of supplied review papers and powerpoint presentations or other publications/learning materials
5. Write a final quiz consisting of 25 multiple choice and short answer questions relating to molecular protocols and role of molecular testing in diagnosis and monitoring of hematologic disease
6. Participate in module preceptor evaluation

Specific Objectives:

At the conclusion of the training week, the trainee will be familiar with and will acquire an understanding of the following competencies:
Medical expert/Clinical decision-maker

General Requirements:

1. Demonstrate understanding of the value of molecular technologies in diagnosis and therapeutic monitoring of patients with hematologic diseases
2. Demonstrate knowledge of principles of DNA and RNA based molecular assays
3. Demonstrate a knowledge of principles of advanced immunologic based assays

Specific Requirements:

1. Understand the concepts and distinct features of:
 a. von Willebrand disease and its classification by vWF multimer gel analysis
 b. inherited risk factors for thrombosis and corresponding clotting factor gene mutation/polymorphisms
 c. HITTS associated antibodies and their detection by immunologic and functional assays
 d. type 2N vWD vs. mild hemophilia A
 e. carrier determination in hemophilia A and B by immunologic (probabilistic) and gene mutation (direct) analyses.
 f. molecular abnormalities in leukemias and chronic myeloproliferative disorders such as PV, ET and IMF; and residual disease detection by molecular methods
 g. cell signalling pathway gene mutations as prognostic indicators in acute leukemias such as AML
 h. hematopoietic cell chimerism after BM/PBSC transplantation and its detection by PCR STR and real-time PCR InDel analyses
2. Awareness of appropriate use of molecular testing and ethical and medical/legal implications of molecular DNA screening assays in a family setting
3. Appreciate the important role of quality assurance in the molecular laboratory
4. Understand the limitations of molecular data

Communicator

General Requirements:

1. Establish effective working relationships with consulting hematologists/oncologists/pathologists and staff in other specialized laboratories
2. Obtain and synthesize relevant clinical history from physicians, electronic and written health records.
3. Listen and respond effectively.
4. Discuss, in a timely fashion, appropriate information with the health care team.
Specific Requirements:

1. Understand the role of a pathology consultant with respect to molecular testing
2. Act as a consultant to clinical colleagues on the interpretation and relevance of molecular data, with particular regard to their significance in the management of the patient.
3. Understand the role molecular data should provide in a given clinical situation and be able to communicate it effectively and in a timely fashion in an oral and written form.
4. Assist in the continuing education of clinicians/pathologists and other members of the health care team particularly with respect to appropriate use/ordering of advanced molecular testing.

Collaborator

General Requirements:

1. Consult effectively with other hematopathologists/clinicians and health care professionals.
2. Contribute effectively to other interdisciplinary team activities including BMT group, adult and pediatric bleeding disorders clinics, and other CLS specialized laboratories.

Specific Requirements:

1. Must have sufficient exposure to advanced molecular methods and use/limitations of molecular data to achieve a sound understanding of the role of molecular technologies in clinical management.
2. Demonstrate the ability to advise on the appropriateness of molecular testing and following examination of these, to advise on further appropriate investigations and management
3. Understand and communicate effectively to other health professionals the medico/legal implications of gene based screening in a family or population based setting

Manager

General Requirements:

1. Utilize resources effectively to balance patient care, turn around time, and educational/research needs
2. Allocate finite health care resources wisely
3. Work effectively and efficiently in a health care organization
4. Utilize information technology to optimize patient care, life-long learning and other activities
Specific Requirements:

1. Demonstrate knowledge of the principles of laboratory management and administration particularly with respect to operation of a molecular laboratory
2. Demonstrate knowledge of the methods of quality control in the field of molecular pathology, particularly with respect to PCR based methodologies
3. Demonstrate knowledge of the methods for professional quality assurance as applied to advanced immunologic and DNA/RNA based technologies and the role of external surveys, variance reporting/tracking and other QA programs
4. Demonstrate competence in basic computer skills with emphasis on automated electronic reporting, electronic communication and search strategies

Health Advocate

General Requirements:

1. Contribute effectively to improve the health of patients and communities
2. Recognize and respond to those issues where advocacy is appropriate
3. Understand the role of consult pathology in patient’s care

Specific Requirements:

1. As members of an interdisciplinary team of professionals responsible for individual and population health care, the consult pathologist will endeavour to ensure that laboratory practices and test selection are regularly evaluated to determine that they meet these community needs
2. Reinforce to the public and to the profession the essential contribution of laboratory medicine to health

Scholar

General Requirements:

1. Develop, implement and monitor a personal continuing education strategy
2. Critically appraise sources of medical information
3. Facilitate learning of patients, house staff/students and other health professionals
4. Contribute to development of new knowledge

Specific Requirements:

1. Show proficiency in utilizing electronic access to medical literature in researching a given topic in molecular medicine and show familiarity with use of powerpoint or similar software for preparing a seminar presentation on that topic
Professional

General Requirements:

1. Deliver highest quality patient care
2. Exhibit appropriate personal and interpersonal professional behaviours
3. Practise medicine ethnically consistent with obligations of a physician
4. Demonstrate the knowledge, skills and attitudes relating to gender, culture, and ethnicity pertinent to molecular pathology

Specific Requirements:

1. Act as an appropriate role model for students and others
2. Demonstrate a professional attitude to colleagues and other laboratory staff
3. Have an appreciation of the crucial role of the pathologist in providing quality patient care including; knowledge of an individual professional limitations and the necessity of seeking appropriate second opinions/ opinions of specialists from other disciplines
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
<th>Objectives</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>8:30 – 11:00</td>
<td>Tour of Molecular Hematology Laboratory</td>
<td>Familiarity with the department's physical location and services offered</td>
<td>Lab layout, PCR/non-PCR areas, Overview of molecular services and work centres, Other department interactions, Training schedule, Planned testing vs case reviews, Reference materials: Procedure manual, Selected journal publications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratorv Hazards and Safety</td>
<td>Review of the types of laboratory hazards present in the laboratory and the regulations in place to ensure visitor and staff safety including use of PPE and lab policies</td>
<td>Biohazards, UV light, Cryogenics, Radioisotopes, HV Equipment, Working with PCR products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basis of Molecular Diagnosis</td>
<td>Review of cell biology principles as they relate to molecular testing</td>
<td>Review: Cell structure and Gene organization, Properties of DNA/RNA, Regulation of gene expression, DNA mutations, sequence variations, identity, Proteins, Cell signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Test Menu</td>
<td>Detailed laboratory services and test menu review</td>
<td>Clients Procedure manual and GTS listing Hemostasis and oncology service, volumes and TAT</td>
</tr>
<tr>
<td>13:30-16:30</td>
<td>Acquired Thrombosis Risk Assessment, Hemophilia Diagnosis and Carrier Determination</td>
<td>Screening for HIT associated Antibodies, ELISA for FVIII and vWF, vWD 2N FVIII binding assay</td>
<td>Specimen requirements, receipt and assay methodology Observe: assay technique and data analysis, Reporting format and Pathnet QC/QA, Assay principles and set-up, Reagents and methodology</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>Time</td>
<td>Topic</td>
<td>Objectives</td>
<td>Details</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| | | Mild Hemophilia A or vWD 2N? | | **Case study:**
Data analysis and interpretation
Use in Hem A carrier determination
QC/QA
Assay principles and set-up
Reagents and procedure review
Appropriate use of testing
Case study:
Interpretation and limitations
QA/QC issues |
| **Tuesday** | **8:30- 9:30** | VWD Sub-typing | vWF multimer analysis | Review:
Assay principles and set-up
Appropriate use of testing
Discussion of technique
Case study:
Interpretation and limitations of results
QC/QC issues |
| | **9:30-10:30** | DNA- based Assays | Review of DNA-based Assays
DNA biochemical properties
Specimen requirements and processing
Qualitative assays | Review:
DNA structure, melting, Tm, absorbance
Specimen handling and DNA extraction and quantification
Observe:
Specimen receipt and DNA extraction procedure for DNA testing
Review:
Hybridization
standard PCR assay
Restriction enzyme digestion
Gel electrophoresis
Allele specific PCR
Detection methods
Real time PCR theory
Limitations, sources of error |
| | **10:30-11:30** | Inherited Risk Factors for Thrombosis (I) | Thrombosis risk testing | Review:
Inherited defects in coagulant proteins resulting in increased risk for DVT functional testing: APC resistance
whole blood PCR method theory
Observe:
WB PCR method procedure and equipment (FV and FII assays) |
| | **13:30-14:00** | Inherited Risk Factors for Thrombosis (II) | Case study FV Leiden and FII polymorphism | **Case study:**
Discuss data interpretation and QC/QA issues |
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
<th>Objectives</th>
<th>Details</th>
</tr>
</thead>
</table>
| | 14:00-15:00| Gene Inversion in Severe Hemophilia A | Inverse PCR testing for FVIII gene inversion | Review: Gene inversions and severe hemophilia A
Original southern blotting method vs. new inverse PCR method
Reagents and equipment
Case study: Limitations and sources of error
QC/QA issues |
| | 15:00-16:40| Prognostic indicators in AML | DNA-based testing for mutations in FLT3, NPM1 genes | Review: Role of FLT3 and NPM1 proteins in cell signalling
PCR methodology
AML in children and adults: Karyotypically normal population
Case Study: Screening for mutations in acute leukemia
QC/QA issues and test sensitivity |
| Wednesday| 8:30-11:00 | RNA- based Assays | Review of RNA-based Assays | **Review:** RNA species, stability, primary and secondary structure
RNA liability, RNAse inhibitors
Manual and automated methods
cDNA reactions
Primary and nested PCR detection methods
Quantitative Real-time PCR Reagents and equipment
Assay set up, standards etc
Computer data analysis
Limitations and sources of error |
| | 11:00-12:00| Molecular Oncology | Translocations in leukemia CML/ALL, APL, and other AML | **Review:** Translocations and gene fusions
Cellular consequences |
| | 13:00-15:30| Minimal Residual Disease Detection (I) | Molecular assays for fusion genes | **Review:** BCR-ABL1 and PML-RARA fusion gene assays by nested PCR
Observe: Specimen receipt, processing, and RNA extraction and storage
Equipment and assay reagents |
| | 15:30-16:30| MRD (II) | RT directed, nested PCR | **Case study:** M-bcr and m-bcr translocation identification
Data interpretation and reporting
Appropriate use of testing |
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
<th>Objectives</th>
<th>Details</th>
</tr>
</thead>
</table>
| Thursday | 8:30-10:00 | MRD assay (III) | Quantitative, real time PCR | **Review:** Q-PCR theory
Assay reagents, controls and standards
Data interpretation and sources of error |
| | 10:00-11:30| Monitoring Cancer Therapy | RT-directed Q-PCR for BCR-ABL1 fusion gene transcripts | **Review:** Assay reagents and set-up
Reverse transcription reaction
PCR controls
Observe: M-bcr PCR assay set-up
Case study: Data interpretation and report generation |

* Residents are expected to attend **Hematol Rounds 12:00-1:00, TBCC Auditorium (CC104)**

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
<th>Objectives</th>
<th>Details</th>
</tr>
</thead>
</table>
| Thursday | 13:30-14:00| Hematopoietic Cell Chimerism | Review of blood cell chimerism in BM/PBSC transplantation recipients | **Review:** Definition and types
Importance to assessment of engraftment, residual disease, GvH disease development, disease relapse
Frequency of testing |
| | 14:00-15:00| Molecular Assays for Chimerism Determination | Review of STR PCR and SNP (indel) PCR techniques | **Review:** Theory and assay set-up
Reagents and controls
Specimen requirements, DNA banking
Whole blood vs. Flow separated cells |
| | 15:00-17:00| Chimerism Assessment | STR PCR Assay | **Observe:** DNA banking
Specimen manipulation
Capillary analyzer overview
Electropherogram interpretation
Case study: Complete, mixed and no chimerism examples
Flow sorted cells and chimerism determination |
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
<th>Objectives</th>
<th>Details</th>
</tr>
</thead>
</table>
| Friday | 8:30-9:30 | Laboratory Report | **Result review, and data interpretation.**
Appropriate use of molecular testing and importance of relationship to other laboratory data/patient clinical history QA/QC and TAT issues. | **Discussions with hematopathologists and laboratory section head**
Question and answer session |
| | 9:30-10:00 | Chronic Myeloproliferative | **Review of PV, ET, IMF** | **Review:**
Diagnostic challenges
Laboratory testing Mutations |
| | | Disorders | | |
| | 10:00-12:00| JAK2 V617F Assay | **Real time PCR allelic discrimination assay protocol**
Assay procedure and data analysis | **Review:**
Theory of allelic discrimination PCR
Fluorescent probes and assay set up
Data interpretation and reporting
Sources of error and QA/QC
Observe:
Sample manipulation
Assay set-up and run
Equipment operation
QC/QA and sources of error
Case study:
Raw data analysis
Report Generation and interpretation |
| | 13:00-14:00| QA and QC | **QA/QC issues in the Molecular Laboratory** | **Review:**
Pre-analytic, analytic and post-analytic errors
Incident reporting |
| | 14:00-15:00| Short Quiz | **Assessment of trainee understanding of molecular techniques and their role in diagnosis and monitoring of hematologic diseases** | **25 Short answer/multiple choice question quiz** |
| | 15:00-16:30| Quiz Answers | **Review of quiz answers with trainee and feedback session** | **Quiz review:**
Question and answer session
Review of trainee feedback |

NOTE:
Although this chart outlines the anticipated schedule for rotation through the Molecular Laboratory, the actual testing schedule is determined by specimen volume and batching. Therefore, the timing and amount of laboratory observation must remain flexible during the rotation week. Ample time will be provided for case study review with the Laboratory Director, for those procedures not currently carried out in week of rotation.